In this work, we propose a new approach that combines data from multiple sensors for reliable obstacle avoidance. The sensors include two depth cameras and a LiDAR arranged so that they can capture the whole 3D area in front of the robot and a 2D slide around it. To fuse the data from these sensors, we first use an external camera as a reference to combine data from two depth cameras. A projection technique is then introduced to convert the 3D point cloud data of the cameras to its 2D correspondence. An obstacle avoidance algorithm is then developed based on the dynamic window approach. A number of experiments have been conducted to evaluate our proposed approach. The results show that the robot can effectively avoid static and dynamic obstacles of different shapes and sizes in different environments.
translated by 谷歌翻译
Out-of-distribution (OOD) generalisation aims to build a model that can well generalise its learnt knowledge from source domains to an unseen target domain. However, current image classification models often perform poorly in the OOD setting due to statistically spurious correlations learning from model training. From causality-based perspective, we formulate the data generation process in OOD image classification using a causal graph. On this graph, we show that prediction P(Y|X) of a label Y given an image X in statistical learning is formed by both causal effect P(Y|do(X)) and spurious effects caused by confounding features (e.g., background). Since the spurious features are domain-variant, the prediction P(Y|X) becomes unstable on unseen domains. In this paper, we propose to mitigate the spurious effect of confounders using front-door adjustment. In our method, the mediator variable is hypothesized as semantic features that are essential to determine a label for an image. Inspired by capability of style transfer in image generation, we interpret the combination of the mediator variable with different generated images in the front-door formula and propose novel algorithms to estimate it. Extensive experimental results on widely used benchmark datasets verify the effectiveness of our method.
translated by 谷歌翻译
The introduction of high-quality image generation models, particularly the StyleGAN family, provides a powerful tool to synthesize and manipulate images. However, existing models are built upon high-quality (HQ) data as desired outputs, making them unfit for in-the-wild low-quality (LQ) images, which are common inputs for manipulation. In this work, we bridge this gap by proposing a novel GAN structure that allows for generating images with controllable quality. The network can synthesize various image degradation and restore the sharp image via a quality control code. Our proposed QC-StyleGAN can directly edit LQ images without altering their quality by applying GAN inversion and manipulation techniques. It also provides for free an image restoration solution that can handle various degradations, including noise, blur, compression artifacts, and their mixtures. Finally, we demonstrate numerous other applications such as image degradation synthesis, transfer, and interpolation.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
语义分割是开发医学图像诊断系统的重要任务。但是,构建注释的医疗数据集很昂贵。因此,在这种情况下,半监督方法很重要。在半监督学习中,标签的质量在模型性能中起着至关重要的作用。在这项工作中,我们提出了一种新的伪标签策略,可提高用于培训学生网络的伪标签的质量。我们遵循多阶段的半监督训练方法,该方法在标记的数据集上训练教师模型,然后使用训练有素的老师将伪标签渲染用于学生培训。通过这样做,伪标签将被更新,并且随着培训的进度更加精确。上一个和我们的方法之间的关键区别在于,我们在学生培训过程中更新教师模型。因此,在学生培训过程中,提高了伪标签的质量。我们还提出了一种简单但有效的策略,以使用动量模型来提高伪标签的质量 - 训练过程中原始模型的慢复制版本。通过应用动量模型与学生培训期间的重新渲染伪标签相结合,我们在五个数据集中平均达到了84.1%的骰子分数(即Kvarsir,CVC-ClinicdB,Etis-laribpolypdb,cvc-colondb,cvc-colondb,cvc-colondb和cvc-300)和CVC-300)只有20%的数据集用作标记数据。我们的结果超过了3%的共同实践,甚至在某些数据集中取得了完全监督的结果。我们的源代码和预培训模型可在https://github.com/sun-asterisk-research/online学习SSL上找到
translated by 谷歌翻译
文本分类是具有各种有趣应用程序的典型自然语言处理或计算语言学任务。随着社交媒体平台上的用户数量的增加,数据加速促进了有关社交媒体文本分类(SMTC)或社交媒体文本挖掘的新兴研究。与英语相比,越南人是低资源语言之一,仍然没有集中精力并彻底利用。受胶水成功的启发,我们介绍了社交媒体文本分类评估(SMTCE)基准,作为各种SMTC任务的数据集和模型的集合。借助拟议的基准,我们实施和分析了各种基于BERT的模型(Mbert,XLM-R和Distilmbert)和基于单语的BERT模型(Phobert,Vibert,Vibert,Velectra和Vibert4news)的有效性SMTCE基准。单语模型优于多语言模型,并实现所有文本分类任务的最新结果。它提供了基于基准的多语言和单语言模型的客观评估,该模型将使越南语言中有关贝尔特兰的未来研究有利。
translated by 谷歌翻译
现有的最新3D点云实例分割方法依赖于基于分组的方法,该方法指向获得对象实例。尽管产生准确的分割结果方面有所改善,但这些方法缺乏可扩展性,通常需要将大量输入分为多个部分。为了处理数百万点的场景,现有的最快方法软组\ cite {vu2022222222222222222222222222222222222222ggroup}需要数十秒钟,这是满意的。我们的发现是,$ k $ neart的邻居($ k $ -nn)是分组的先决条件,是计算瓶颈。这种瓶颈严重使现场的推理时间恶化了很多。本文提出了软组++来解决此计算瓶颈,并进一步优化了整个网络的推理速度。 SoftGroup ++建立在软组上,这在三个重要方面有所不同:(1)执行OCTREE $ K $ -NN而不是Vanilla $ k $ -nn,以将时间复杂性从$ \ Mathcal {o}(n^2)缩短到$ \ Mathcal {o}(n \ log n)$,(2)执行金字塔缩放,适应性下降样本骨干输出以减少$ k $ -nn和分组的搜索空间,并且(3)执行后期的Devoxelization,延迟了Voxels的转换指向模型的结束,以使中间组件以低计算成本运行。在各种室内和室外数据集上进行了广泛的实验,证明了拟议的软组++的功效。值得注意的是,SoftGroup ++在一个前方的情况下通过单个前方进行了大量的场景,而无需将输入分为多个部分,从而丰富了上下文信息。特别是,SoftGroup ++达到2.4点AP $ _ {50} $改进,而$ 6 \ $ 6 \ times $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $。代码和训练有素的模型将公开可用。
translated by 谷歌翻译
如今,随着发现的OSS漏洞的数量,开源软件(OSS)漏洞管理流程随着时间的流逝而增加。监视漏洞固定提交是防止脆弱性开发的标准过程的一部分。但是,由于可能有大量的审查,手动检测漏洞固定的犯罪是耗时的。最近,已经提出了许多技术来自动检测使用机器学习的漏洞固定提交。这些解决方案要么:(1)不使用深度学习,或(2)仅对有限的信息来源使用深度学习。本文提出了藤条,该工具利用了更丰富的信息来源,包括提交消息,代码更改和针对漏洞固定的提交分类的报告。我们的实验结果表明,在F1得分方面,沃尔维尔剂的表现优于最先进的基线。 Vulcurator工具可在https://github.com/ntgiang71096/vfdetector和https://zenodo.org/record/7034132#.yw3mn-xbzdi上公开获得。
translated by 谷歌翻译
构建静态呼叫图需要在健全和精度之间进行权衡。不幸的是,用于构建呼叫图的程序分析技术通常不精确。为了解决这个问题,研究人员最近提出了通过机器学习为静态分析构建的后处理呼叫图所授权的呼叫图。机器学习模型的构建是为了通过在随机森林分类器中提取结构特征来捕获呼叫图中的信息。然后,它消除了预测为误报的边缘。尽管机器学习模型显示了改进,但它们仍然受到限制,因为它们不考虑源代码语义,因此通常无法有效地区分真实和误报。在本文中,我们提出了一种新颖的呼叫图修剪技术AutoRoprouner,用于通过统计语义和结构分析消除呼叫图中的假阳性。给定一个由传统静态分析工具构建的呼叫图,AutoProuner采用基于变压器的方法来捕获呼叫者与呼叫图中每个边缘相关的呼叫者和Callee函数之间的语义关系。为此,AutoProuner微型调节模型是在大型语料库上预先训练的代码模型,以根据其语义的描述表示源代码。接下来,该模型用于从与呼叫图中的每个边缘相关的功能中提取语义特征。 AutoProuner使用这些语义功能以及从呼叫图提取的结构特征通过馈送前向神经网络分类。我们在现实世界程序的基准数据集上进行的经验评估表明,AutoProuner的表现优于最先进的基线,从而改善了F量级,在识别静态呼叫图中识别错误阳性边缘方面,高达13%。
translated by 谷歌翻译
数十年来,计算机系统持有大量个人数据。一方面,这种数据丰度允许在人工智能(AI),尤其是机器学习(ML)模型中突破。另一方面,它可能威胁用户的隐私并削弱人类与人工智能之间的信任。最近的法规要求,可以从一般情况下从计算机系统中删除有关用户的私人信息,特别是根据要求从ML模型中删除(例如,“被遗忘的权利”)。虽然从后端数据库中删除数据应该很简单,但在AI上下文中,它不够,因为ML模型经常“记住”旧数据。现有的对抗攻击证明,我们可以从训练有素的模型中学习私人会员或培训数据的属性。这种现象要求采用新的范式,即机器学习,以使ML模型忘记了特定的数据。事实证明,由于缺乏共同的框架和资源,最近在机器上学习的工作无法完全解决问题。在本调查文件中,我们试图在其定义,场景,机制和应用中对机器进行彻底的研究。具体而言,作为最先进的研究的类别集合,我们希望为那些寻求机器未学习的入门及其各种表述,设计要求,删除请求,算法和用途的人提供广泛的参考。 ML申请。此外,我们希望概述范式中的关键发现和趋势,并突出显示尚未看到机器无法使用的新研究领域,但仍可以受益匪浅。我们希望这项调查为ML研究人员以及寻求创新隐私技术的研究人员提供宝贵的参考。我们的资源是在https://github.com/tamlhp/awesome-machine-unlearning上。
translated by 谷歌翻译